日韩欧美福利视频_亚洲欧洲成视频免费观看_国v精品久久久网_7777精品久久久大香线蕉小说

技術文章

Technical articles

當前位置:首頁技術文章In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-Performance

更新時間:2021-06-01點擊次數:3095

In Situ Assembly of Ordered Hierarchical CuO Microhemisphere Nanowire Arrays for High-

        Performance Bifunctional Sensing Applications Tiantian Dai, Zanhong Deng, Xiaodong Fang,* Huadong Lu, Yong He, Junqing Chang, Shimao Wang, Nengwei Zhu, Liang Li,* and Gang Meng*

1. Introduction

       Device fabrication/integration is a longstanding challenge issue for the practical application of metal oxide nanowires with distinctive physiochemical and unique quasi-1D geometric properties.[1–3] In comparison with conventional planar nanowire devices, in which postsynthesis alignment (Langmuir–Blodgett technique,[4] contact printing,[5] and blow bubble,[6] etc.) is first employed and then electrodes are deposited, by directly growing nanowires on the selected area of solid substrates with bottom electrodes, when the tips of nanowires growing on the counter electrodes encompass each other and form stable junctions, a “bridged” nanowire device could be formed (at a large scale) in an in situ manner.[7–10] Apart from the superior benefits of facile integration of nanowire devices, bridged nanowire devices outperform conventional planar nanowire devices in several aspects. First, in situ growth ensures good electrical contact between the nanowires and the underlying electrode,[11] which plays an essential role in the performance of diverse microelectronic devices, including sensors,[12] photodetectors,[13] field emitters,[14] and energy storage devices.[15] Second, a nonplanar (or suspended) configuration not only avoids carrier scattering at the nanowire/substrate interface (leading to increased mobility)[16] but also offers a maximal exposure surface for analyte molecule adsorption (acting as a gate-all-around effect) and thus offers an additional avenue for designing highly sensitive sensors with ultralow power consumption.[7,11,17,18] As an important p-type oxide with versatile properties, CuO nanowires have promising applications in molecular sensors for harmful vapor monitoring,[19–23] photodetectors,[24] field emitting devices,[25] energy storage devices,[26] etc. Previous studies indicate that the number and density of bridged nanowires play an important role in the device performance (i.e., response and power consumption of gas sensors),[7,27] therefore, a rational synthesis methodology is essential for constructing high-performance devices. Though thermal oxidation of Cu (powder, foil, wire, film, etc.) offers a simple and catalyst-free method[28,29] for anisotropic growth of CuO nanowires, driven by oxidation induced strain between the CuO/Cu2O interfaces, as well as the fast outer diffusivity of Cu ions across the CuO/ Cu2O/Cu interfaces[29,30] and thermal oxidation of Cu powder or sputtered (patterned) Cu film dispersed/deposited onto the electrode substrate enabling the formation of bridged nanowires,[8,19] weak adhesion (due to thermal oxidation induced strain),[31] poor uniformity and uncontrolled electrical pathways hinder their promising applications. In this work, a novel methodology based on dewetting of patterned Cu films to create ordered Cu microhemisphere arrays was reported. Ag layer was proposed as a sacrificial layer to assist the dewetting of Ag/Cu/Ag films into microhemispheres at a relatively low temperature of 850 °C. Sacrificial Ag could be readily removed by vacuum evaporation due to the higher vapor pressure of Ag than Cu. In comparison with previously reported Cu powder or Cu film devices, Ag-assisted dewetting significantly shrinks the contact area of Cu/substrate to ≈1–500 µm2 (depending on size), which allows effective release of the interfacial stress during thermal oxidation of Cu[31] and contributes to firm adhesion with the underlying substrate. In addition, the position and size of hemisphere Cu arrays could be readily controlled, which plays a vital role in manipulating the structural properties (diameter, length and bridging density of nanowires) of CuO nanowires grown by thermal oxidation on diverse insulator substrates with indium tin oxide (ITO) electrodes. The in situ formed regularly bridged CuO microhemisphere nanowire arrays (RB-MNAs) devices exhibit much higher gas molecule and light responses than irregularly bridged microsphere nanowires (IB-MNs) devices, fabricated by thermal oxidation of Cu powder dispersed on ITO electrode substrates. For example, the electrical response (toward 100 ppm trimethylamine, TMA) of the RB-MNAs device is 2.8 times as high as that of the IB-MNs device at an operation temperature of 310  °C. The on/off current ratio toward (15.6  mW cm−2 ) 810  nm of the RB-MNAs device is 1.5 times as high as that of the IB-MNs device. Finally, 4 × 4 RB-MNAs devices were integrated onto a transparent ITO/quartz wafer, demonstrating the potential of the present methodology for the mass production of bridged CuO nanowire devices for future applications.

 2. Results and Discussion

        Although dewetting of uniform patterned metal films offers an approach to obtain homogeneous metal micro/nanoparticle arrays,[32,33] dewetting of patterned Cu films (prepared by using Ni shadow masks, the geometric parameters are listed in Table S1, Supporting Information) fails even at a high temperature of 850  °C. The high melting point of Cu (1085  °C) probably hinders the shrinking of the patterned Cu film at 850  °C (Figure S1, Supporting Information). Binary Cu-metal phase diagrams indicate that CuAg alloy (with 71.9 wt% Ag) possesses a low melting temperature of 779 °C,[34] which suggests that alloying with Ag may facilitate the dewetting of Cu film. Moreover, as the vapor pressure of Ag is much higher than that of Cu, Ag may be removed by appropriate thermal evaporation. Inspired by the abovementioned analysis, the patterned Cu film was sandwiched between the top and bottom Ag sacrificial layers (Ag/Cu/Ag) on a SiO2/Si or quartz substrate coated by ITO interdigital electrode (Figure 1a,e). As expected, the Ag/Cu/Ag film (size of 10.5  µm, thickness of 1.2/1.2/1.2  µm, with a Ag weight ratio of ≈70%) could be dewetted into a hemisphere shape (inset of Figure 1f) via vacuum or inert gas atmosphere annealing in a tube furnace (to prevent oxidation of metals) at 850 °C (Figure 1b,f). A noticeable decrease in the diameter of hemispheres from 8.0 ± 0.3 µm (Figure S2a, Supporting Information) to 7.0  ± 0.3 µm (Figure S2b, Supporting Information) was observed after performing vacuum evaporation (850 °C, 0.1 Pa, 1 h) (Figure 1c,g and Figure S2, Supporting Information). Moreover, the appearance of a dark condensed metal film in the low-temperature zone of the quartz tube furnace infers the evaporation of Ag, because the vapor pressure of Ag (≈2.8 × 10−1  Pa) is much higher than that of Cu (≈2.3 × 10−3  Pa) at 850  °C.[35] Thermal oxidation of ordered Cu microhemispheres at 400–450  °C allows the formation of ordered hierarchical CuO microhemisphere nanowires (Figure  1d,h). Specifically, when the nanowires grown from adjacent Cu spheres contact each other, a bridged nanowire device could be formed in an “in situ” manner. To monitor the variation of sacrificial Ag, energy dispersive spectrometry (EDS) analysis was performed (Figure 1i–l). Pristine Ag/Cu/Ag shows a higher Ag ratio (78.5  wt%) than the nominal ratio (70.3 wt%), as EDS is a surface analysis method that can only collect the generated X-ray signal in a region of ≈2 µm in depth depending on the atomic number,[36] which is less than the thickness of the Ag/ Cu/Ag film (≈3.6  µm) in Figure  1e. The substantial decrease in the Ag component in the CuAg alloy from 62.7  wt% (Figure  1j) to a negligible 0.2 wt% (Figure  1k) via vacuum evaporation suggests that most of the sacrificial Ag was evaporated. Appearance of O signal in the dewetted CuAg and Cu hemispheres (Figure  1j,k) may arise from trace oxidization by remaining oxygen in the vacuum (≈0.1 Pa) tube furnace during dewetting and evaporation process. Moreover, the tiny variation in Cu volume from the initial Cu film (Figure 1e) to the hemisphere (Figure  1g) infers that Cu was maintained during the dewetting and evaporation process. The use of a Ag sacrificiallayer allows the fabrication of ordered Cu microhemisphere arrays (Figure  1c,g) on a solid substrate and further obtains ordered hierarchical CuO microhemisphere nanowire arrays (Figure 1d,h).

 

 

 

 

 

 

 

 

以上論文信息不完整    感謝中科大的孟老師對微型探針臺的反饋!需要詳細的文獻,請到中科院一區  影響因子12    感謝所有的科研奉獻者辛勞的付出。

日韩欧美福利视频_亚洲欧洲成视频免费观看_国v精品久久久网_7777精品久久久大香线蕉小说
国产三级欧美三级日产三级99 | 不卡的av中国片| 日韩精品一二三| 亚洲一区二区精品久久av| 亚洲日本韩国一区| 自拍偷自拍亚洲精品播放| 亚洲视频资源在线| 一区二区三区小说| 亚洲国产成人av| 视频一区欧美精品| 久久国产成人午夜av影院| 精品亚洲欧美一区| 国产不卡在线视频| 91麻豆国产福利精品| 日本黄色一区二区| 欧美日韩国产高清一区二区三区| 欧美久久久久久久久中文字幕| 欧美一区二区性放荡片| 欧美成人a∨高清免费观看| 久久久久久久久久电影| 国产精品亲子伦对白| 亚洲免费在线看| 日日骚欧美日韩| 国产麻豆精品在线观看| av亚洲产国偷v产偷v自拍| 91蜜桃婷婷狠狠久久综合9色| 91久久免费观看| 日韩午夜电影在线观看| 欧美激情中文不卡| 偷窥国产亚洲免费视频| 国产精品综合视频| 欧美日韩中字一区| 国产欧美一区在线| 夜夜嗨av一区二区三区| 秋霞av亚洲一区二区三| 国产91对白在线观看九色| 欧美性大战久久| 国产亚洲欧美日韩日本| 亚洲福利视频三区| 国产乱色国产精品免费视频| 色拍拍在线精品视频8848| 日韩欧美一级在线播放| 中文字幕一区二区三区在线播放 | 精品国产一区二区精华| 国产精品对白交换视频 | 国产精品亚洲综合一区在线观看| 成人美女视频在线观看| 欧美日韩一卡二卡三卡 | 欧美精品丝袜中出| 国产欧美精品一区二区色综合朱莉| 一区二区欧美精品| 国产成人免费xxxxxxxx| 91精品国产丝袜白色高跟鞋| 亚洲美女区一区| 国产精华液一区二区三区| 欧美精品vⅰdeose4hd| 综合色天天鬼久久鬼色| 久久成人精品无人区| 欧美日韩国产一级二级| 亚洲视频一二三| 国产精品亚洲一区二区三区妖精| 欧美日韩国产高清一区二区| 综合自拍亚洲综合图不卡区| 国产成人精品免费| 亚洲精品一区二区三区蜜桃下载 | 91九色最新地址| 国产精品美女久久久久久久久| 美女网站在线免费欧美精品| 在线观看三级视频欧美| 亚洲色图视频免费播放| 成人h动漫精品一区二| 欧美极品美女视频| 国产精品一二三| 久久综合九色欧美综合狠狠| 秋霞成人午夜伦在线观看| 欧美人与性动xxxx| 亚洲福利电影网| 欧洲视频一区二区| 亚洲三级小视频| 99久久综合狠狠综合久久| 国产欧美一区二区三区网站| 国产精品资源在线观看| 久久伊99综合婷婷久久伊| 蜜桃视频在线一区| 日韩欧美电影一二三| 久久99国产精品久久| 精品国产一区二区三区久久久蜜月 | 精品国产亚洲一区二区三区在线观看| 亚洲国产精品久久人人爱蜜臀| 91免费观看在线| 一区二区三区精品视频在线| 欧美亚洲综合另类| 五月天激情综合| 欧美一区二区视频免费观看| 久久99精品久久久久婷婷| 欧美成人性战久久| 国产成人亚洲综合a∨猫咪| 国产三区在线成人av| aaa亚洲精品| 一区二区三区鲁丝不卡| 欧美高清性hdvideosex| 九色综合国产一区二区三区| 国产婷婷色一区二区三区在线| 粉嫩蜜臀av国产精品网站| 亚洲人成人一区二区在线观看| 欧美伊人久久大香线蕉综合69| 亚洲不卡av一区二区三区| 精品国产乱码久久久久久免费| 懂色av一区二区在线播放| 亚洲综合无码一区二区| 日韩一级片网站| 本田岬高潮一区二区三区| 亚洲成人午夜电影| 久久嫩草精品久久久久| 91美女蜜桃在线| 另类调教123区| 亚洲日本一区二区| 日韩欧美一区二区免费| 92精品国产成人观看免费 | 久久精品夜色噜噜亚洲a∨| 色88888久久久久久影院野外| 日韩影视精彩在线| 国产精品家庭影院| 欧美一级日韩不卡播放免费| 欧美高清在线一区| 欧美午夜视频网站| 成人激情免费电影网址| 日韩成人一区二区三区在线观看| 国产亚洲精久久久久久| 欧美人妇做爰xxxⅹ性高电影 | 亚洲精品高清在线观看| 精品国产乱码久久久久久夜甘婷婷 | 亚洲 欧美综合在线网络| 久久久久久久久久久久电影| 欧美午夜电影网| av中文字幕亚洲| 国产剧情一区在线| 婷婷六月综合亚洲| 亚洲精品国产第一综合99久久| 久久女同互慰一区二区三区| 欧美色图一区二区三区| 成人涩涩免费视频| 韩国成人福利片在线播放| 午夜精品久久久久久久久| 国产精品免费视频网站| 日韩精品一区二区三区视频在线观看 | 亚洲一级二级在线| 国产精品免费久久| 久久天堂av综合合色蜜桃网| 制服丝袜亚洲精品中文字幕| 在线观看日韩电影| 91亚洲精品久久久蜜桃网站| 国产精品99久久久久久久vr | 色综合天天综合色综合av| 国产一区激情在线| 另类小说欧美激情| 蜜臀久久久久久久| 亚洲成人777| 亚洲午夜久久久久久久久电影网| 国产精品天干天干在观线| 欧美精品一区视频| 日韩无一区二区| 日韩一区二区三区高清免费看看| 91丨porny丨在线| 国产精品一区久久久久| 看国产成人h片视频| 免费成人av资源网| 日本美女一区二区三区视频| 丝袜美腿高跟呻吟高潮一区| 一区二区三区在线观看国产| 成人欧美一区二区三区| 国产精品久久综合| 中文字幕一区在线观看视频| 中文字幕一区二区不卡| 中文字幕制服丝袜一区二区三区| 中文字幕在线观看一区| 国产精品欧美精品| 亚洲天堂久久久久久久| 亚洲蜜臀av乱码久久精品蜜桃| 亚洲三级在线观看| 亚洲一本大道在线| 午夜电影网一区| 日韩制服丝袜先锋影音| 美女在线观看视频一区二区| 狠狠色丁香久久婷婷综合丁香| 精品无码三级在线观看视频| 国产一区二区三区在线观看精品| 精品亚洲aⅴ乱码一区二区三区| 黑人巨大精品欧美一区| 国产a精品视频| 91在线视频网址| 欧美日韩在线观看一区二区 | 欧美精品v国产精品v日韩精品| 3atv在线一区二区三区| 精品国产露脸精彩对白| 久久久噜噜噜久久人人看| 亚洲欧洲在线观看av| 亚洲成人av电影| 久久爱另类一区二区小说| 国产精品一区二区不卡|